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The plane Neumann-Kelvin problem, which uses a linear approximation of the theory of waves of small amplitude to describe 
the steady, vortex-free motion of semi-submerged cylindrical bodies in an ideal, incompressible, heavy liquid with a free surface, 
is considered. For each lied value of the free-stream velocity and a convoy of two or more bodies it is shown that the geometry 
of the bodies can be so chosen that the homogeneous Neumann-Kelvin problem will have a non-trivial solution. A family of 
potentials is constructed that provide such examples of non-uniqueness. The corresponding configurations can be obtained 
by choosing some of the streamlines of the solutions as the body contours. JWrnples are given. 0 1998 Elsevier Science Ltd. 
All rights reserved. 

The classical work in this field includes [l, 21, which are devoted to the Neumann-Kelvin problem for 
a totally submerged body. Subsequent attempts were made to apply that boundary-value problem to 
the motion of bodies which emerge from the free surface of a liquid (see [3-51, for example). The 
condition that the velocity vector must be bounded everywhere in the liquid was commonly replaced 
by the condition that it must be bounded outside a compact set which included the body. This led to 
singularities of the velocity vector at the points of intersection of the body surface and the free surface, 
resulting in an open boundary-value problem. Several kinds of additional conditions have been suggested 
(see [3-51, for example). We will use an extension of the formulation proposed in [3]. 

1. FORMULATION OF THE PROBLEM 

We will describe the boundary-value problem using the example of a single body. The notation is 
shown in Fig. 1, where W is the cross-section of the region containing the liquid, F = F, U F_ is the 
free surface of the liquid, D and S are the cross-section and wetted surface of the cylinder, U is the 
constant velocity of the body along the abscissa axis, and g is the acceleration due to gravity:It will be 
assumed that the unilateral tangents to S at the points Pk make angles B, # 0, x with the rays F,. The 
unit normal directe:d into the region occupied by the liquid is denoted by n. 

We will use dimensionless coordinatesx = X&/U2 and y = Yg/U2 below. Then, in a system of coordinates 
associated with the body, the Neumann-Kelvin problem for finding the velocity potential u E H’&w), 
reduced to dimensionless form using the coefficient g/U3, takes the form 

V’U =0 in W (1.1) 

%+~, =0 on F\(P+,P_] (1.2) 

autatl=f on s\(~+,p) (l-3) 

lim IVul=O 
x-++- (1.4) 

sup{ JVu(: (x, y) E w \ E} < = (1.5) 

where E is a compiact set for which B C E and E f~ (F,\{P+}) + 0. Iff = cos(n, x), then (1.3) is the 
impermeability condition. 

We must supplement Eqs (l.lH1.5) by two conditions, and will use the asymptotic form of the solution 
near a nodal point established in [4] for this purpose. We introduce polar coordinates (p,, e+) with 
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Fig. 1. 

pole at the point P, and polar axis in the direction of the rayli,. The angle 8, (O-) will be taken (anti-) 
clockwise so that 0 d 8 = d p-C. Then if S E C* andf cz C1 (S), as p= + 0 we have 

u = C, + B+pF’(‘s*) sin(nCl, / (2&)) + A,p, cos(8, -a+) + O( pp ) for p* # x/2 

(1.6) 
~=C~+~*[p,lcgp&n@* +p~(e*-n:I2)cose,]+A,p,cos(e, -a,)+O(pP) 

for j3* < x12. 
Here a& and h, are constants, and 1 < h, < 2 for p+ 3 x/2 and h, = 2 for l& < x/2. 
If the submerged part of the body is a semicircle, the formulation given in [3] gives the so-called “least 

singular solution” with velocity vector bounded at nodal points. In [4] this was applied to an arbitrary 
contour with fi* 2 x/2, but it follows from (1.6) that the velocity fields have singularities. Below we will 
use an appropriate generalization for contours for which @+ < x/2 or l3- < x/2. 

Definition. The potential u is called the “least singular solution” if it is a solution of Eqs (1.1X1.5) 
and satisfies the conditions 

B+=B_=O U-7) 

where B, are the coefficients in (1.6). 
This formulation is easily extended to the case of an arbitrary number of half-submerged bodies. The 

results obtained in [4] apply to that case also. 
Our aim here is to construct examples of non-uniqueness for problem (l.l)-(1.5), (1.7), or to find 

potentials which satisfy the homogeneous condition (1.3) and have finite energy. We will use the idea 
suggested in [6] to construct examples of non-uniqueness for the oscillations of a liquid in which there 
is a floating body. We place a source and sink of equal intensity on the free surface of the liquid and 
take certain streamlines of a given potential as the body contours. We will show that these contours 
can be chosen so that each of the singularities lies inside one of the cylinders thus defined. For this 
geometry, the proposed potential is a solution of problem (1.1X1.5), (1.7) with homogeneous Neumann 
condition (1.3) on the wetted surface of the bodies. The maximum number of streamlines which can 
be chosen as body contours for the potential thus constructed depends on the distance between sources. 
Below we will classify the examples of non-uniqueness as a function of this parameter. 

It can be hypothesized that the existence of examples of non-uniqueness is due to the unsteadiness 
of the flow past the resulting configurations for corresponding values of the velocity. 

2. GREEN’S FUNCTION 

Green’s function G(x, y; 5, TJ) of the Neumann-Kelvin problem, which satisfies conditions (1.2) and 
(1.4), the equation 

V,,yG(x.~;Lrl) = -6(x-&y-t-l) for y<O, rl <O 

and the condition 

can be written in the form 
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(;(z;C) = -(2x;)-’ Re{log((z - c)(z -%)) - 2e-“L-e’[Ei(i(z - f)) - ix]} (2.1) 

Here z = x + iy, < = 5 + iq and Ei(z) is the integral exponential function. 
Consider the case where there is a source on the free surface. We introduce the stream function of 

the source H(z; c), which is the conjugate of Green’s function with respect to the argument t. Using 
formula 8.212.5 of [8], we write 

H(x.J&O)=-rr-‘arg(z-{)+x%.p.] 
O” 8 sink@-5) 

dk-eYcos(x-5) 
0 k-l 

where arg(z) E [-rt, 0] for y d 0. The relation 

which follows from formula 3.941.1 in [8], yields a different representation 

ebsink(x-5)&+Ir 
k(k - 1) 2 

_ee’cos(x_~) 

(2.2) 

c-w 
Using the expansion of Ei(z) as z + 0 (cf. 51.10 in [7]), it can be seen that the function H(x, y; 5, 0) 

is continuous at the point (5, 0). 

3. EXAMPLES OF NON-UNIQUENESS 

We will consider the family of potentials u, obtained by placing a source and sink of equal 
intensity on the free surface at a distance which is a multiple of X, and the corresponding stream 
functions 

U”(X, y) = ltH(x, y; ml, 0) - xH(x, y; -lw, 0) (3.1) 
The latter are even functions of x, so that we can restrict our consideration to the region x 2 0. 

Note. As 1 z 1 + -8 and 1 c 1 < C < m, we have (see [4], for example) 

G(z;C) = -A-’ log]z]- lY(-x)2eY+q sin(x-&++I-‘) 

where 6 is the Heavi,side function. Thus, the functions u, are so defined that the asymptotic forms at infinity do 
not contain either a Ilogarithmic or a wave component. 

Let $?,, denote the set of level lines of the function v,(x, y), the end-points of which lie on the free 
surface, and let all the streamlines which occur in this set be parametricized using the variable t E 
[0, 11. We will also consider %i = {(x(t),y(t)) E %o: WQ,Y~(O) E %o, [xi(O),xi(l)l C (x(%x(l)), i = 
1,2, (xi(O), xi(l)) fl (x2(O), ~~(1)) = 01, the set of streamlines which include more than one family of 
streamlines. 

We define % = !Ro\%i. We will introduce the ratio of homotopic equivalence p C $R x 3.: the two 
streamlines r(t) and f(t), where t E [0, 11, are homotopic, (r, y) E p, if there is a function @(f, S) with 
the following properties: @(t, S) is continuous with respect to t E [0, l] and s E [O, 11; @(t, S) E % for 
any S E [O, 11; (o(t, 0) = y(f), a,(t, 1) = r’(t). w e will prove the following theorem. 

Theorem 1. The power of the factor-set ‘Z&/p is equal to 2n + 1. 
Let Ti and T2 be sets of streamlines which include the sources. It will be shown below that Tl # 0 

andTz+ 0.LetQt,Q2andT~(3si 6 2n + 1) denote classes of homotopically equivalent contours 
such that Qi > Tl and Q2 > T2 Then by Theorem 1, %/p = {Qi, Qz, T3, . . . , Th+l. We choose certain 
COntOUrS s = yl U ‘r2 U . . . yN, where 2 s N d 2n + 1 and ‘yi E 2;:. Obviously, when the given family of 
lines S is taken as the contours for problem (1.1)-(M), (1.7), the corresponding potentials u, are the 
solutions of the problem with the homogeneous condition (1.3). 
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4. REPRESENTATIONS OF THE FUNCTION V, 

Comparing representations (2.2) and (2.3), for a tixed value of x we have the differential equations 
2&&J = II, - V,, which has the solution 

V,(x,t)e-‘df (4.1) 

Here 

and, obviously 

As we have pointed out, 
by the integral is a strictly 

V,,(X, y) = arg(x + 7tn+ iy) - arg(x - 7cn + iy) 

0 d V&x, y) s 7c for y d 0 (4.2) 

the integrand has a constant sign, and therefore the term in (4.1) represented 
monotone function of the variable y. 

5. THE FUNCTIONS u,(n, 0) 

We will now consider the behaviour of the functions u,(x, 0) in the interval [0, ruz]. From (3.1) and 
(2.2) we have 

w 
fJ,(x,O)=rt+ j 

sin k(x - xn) - sin k(x + 7wz) dk 

0 k-l 

Using formulae 3.722.5 and 3.354.1 of [8], we obtain 

u& 0) = 4-d + 44 
r(x)=R(l-2cos(x-xn)), Z(x)=f+(x)+Z-(x) 

Z’(x)= j e(;;-k;)k & 

0 

(5.1) 

We will find bounds for the function Z(x). We have 

f+(X)< 7 dk=Ic 
o l+k* 2’ 

x c [O,xn], 

Combining the resulting inequalities, we obtain 

Z(x) < 2x/3 (5.2) 

For x E [0, nn] we have max {r(x)) = 3x and min {r(x)} = -rc. From the last inequality for Z(x), we 
lmow that the function x+&x, 0) changes sign between each adjacent minimum and maximum of the function 
r(x) and therefore the equation u&x, 0) = 0 has at least one root in that interval. This root is unique. 

For if there were several such roots, there would have to be a point at which &,(x, O)/& = 0. We will show that 
this is impossible. 

Let R = {x: 1 r(x) 1 d 21c/3) denote a set in which the functions r(x) and Z(n) are commensurate in absolute value. 
Obviously 

min{]dr(x)ldr]:x E R} = 2zsin(arccos(5/6)) = x&i/3 

Then 

df*(x) 00 &x-m)' 
-==+j 

dx 0 l+k* 
dk 
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Since k s 8-l when k 3 0, we have 

Idl-(x)/drl~l+(l)/e<nl(2c) 

Ifx E R, then 1ot -x ~3 arrccs(5/6) > l/2. Also, obviously, if k 3 0, then k S 2$d2-‘. Thus 

IdI+(x)/drls2l+(x+~)/e<n/e 

Combining the bounds thus obtained and the inequality 11 a I - I b II P max Qul, 1611 we have 

min{~dl(x)ldx(:x~R}<x/e<min{~dr(x)ldx~:x~R}=Ir~/3 

If x > XIZ, from the representation 

00 e-(x+nn)k _ ,-(x-lmY 
un(-%O)= j 

l+k* 
dk P-3) 

0 

which follows from :formulae 3.7225 and 3.354.1 in [8], we conclude that forx > xn u,,(x, 0) is a strictly 
negative, monotonely increasing function and u,(x, 0) + 0 as x + +w. 

We note that u&:, y) is an even function of x. 
This proves the following lemma. 

Lemma 1. The function u,&, 0) has 2n zeros E,r < 52 c . . . < 5h. Also 4 E (-m, m) for i = 1, 
2 2n. 

’ &e ihall also need the following lemma. 

Lemma 2. There are exactly 2.~ + 1 local extrema of the function u,,(x, 0), situated at the points ~1 
c x.2 < . . . < xti+l,. Aso XI E (-m 51)~ xti+l E (L, m) and x E G-I, 4) (i = Z3, . . . , b). 

proof. Obviously, &J,,/& f 0 if 1x1 > ~1. Then in each of the intervals (4, b+i) (i = 1,2, . . . ,2n), there is at 
least one extremum of the function un(x, 0). We will show that there is also at least one eztremum in each of the 
intervals (-rm, 51) and (5%, nn). 

We have shown that 5% < 5’ = 1v1- arccos(5/6). Considerx E (p, rm). We will write the equation aU,(x, O)/& = 0 
in the form 

2nsin(lur-x)=dl(x)ldx (5.4) 

The expression on the left-hand side of (5.4) decreases monotonely and vanishes at x = rvr, and the expression 
on the right-hand side. of (5.4) is strictly positive and monotonely increasing. We have 

dl(x)ldxcx/ec2Rsin(NI_5*)=IrJii/3 

Thus Eq. (5.4) has a root. 
Consider the function a”u,(x, 0)/&x2 for x E [0, nn]. Obviously 

#VAX, o,flx* = P(X) + q(x) -I(x) 

p(x) = 2n cos(x -rot), q(x) = (x + lr& - (x - lul)-’ 

(the function 1(x) was defined above). 
For x E [rur - IC/~, nn], we have 

P(X) + q(x) > n + 3/n 

and, from (5.2), d’u,,(x, 0)/dx2 > 0 forx 2 IVJ - n/3. It follows that the root of Eq. (5.4) corresponds to the minimum 
of the function u,(x, 0). 

We have thus established that in the interval (-n.n, NZ) the function u,(x, 0) has extrema at m points, where 
m~L?Jz+l. 

We will now investigate the zeros of the function &,(x, 0)/d?. For x E [0, rm - x/3], we have 

q(x) < 4/n. I I(x) - q(x) I < 2n/3 

At the same time, for x E [0, rut] we have max@(x)> = -min@(x)> = 211. Thus, between each minimum and 
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maximum ofp(x), the function a*u,(x, 0)/&x* changes sign. Let P = {x: I&) 1 < 21~/3). Obviously 

min{]&(x)ldr]:xE P}= 2nsinarccos(j$)=47cJZ/3 

For x E [0, rvz - n/3] we have dq(x)/dx = -(x + rm)-* + (x - xn)-* c 9/7t?. Using the estimate for ]dl(x)kfr 1 obtained 
above, we arrive at the inequality 

]dl(x)ldr-dq(x)ldx] Gx/e+9/rc2 <min{]d$(x)/dr~:xEP}=4lCJZ13 

It follows that there are exactly 2n roots of the equation a*u,(x, O)/&* = 0 in the interval (--NZ, WZ). Since there 
must be a root of the equation 2*u,(x, O)/&* = 0 between every two extrema of the function u,,(x, 0), we have 
m = 2n + 1. This proves the lemma. 

6. THE STRUCTURE OF THE LEVEL LINES 
OF THE FUNCTION u,(x, y) 

Note that it follows from the properties of harmonic functions that there cannot be isolated points 
W,Y) = c. Moreover, the streamlines cannot end inside the liquid. A proof of these properties can 
be found in [6], for example. 

We now consider the behaviour of the zero level lines. In view of (4.1), we can find a solution of the 
equation u,(x, y) = 0 for fixed x* from the equation 

uA(x*,o) = -; v,(x’,t)e-‘df (6.1) 

It follows from the definition of the function V,, and inequality (4.2) that the right-hand side of the 
last equation is a negative, unbounded and monotonely decreasing function of the depth ]y I. Thus, a 
solution of Eq. (6.1) exists and is unique if, and only if, u,&*, 0) s 0. 

It follows from (5.3) and Lemma 1 that v,(x, 0) s 0 only forx E Fi (i = 1,2, . . . , n + l), where F1 

= (-3 511, J’,+, = Kzm +-), Fj+l = [&, 5a+11 0’ = 4% * * * 3 n - 1). Let “lo(i) denote zero level lines, 
so that ‘ya(r). Then the lines Fi = pr,(ys@) (i = 1, 2, . . . , n + 1) and #“I depart to infinity, and the 
contours ypi) (j = 2 3 , n - 1) are bounded. 

Obviously, all the negative level lines starting in the interval Fi lie inside the contour ye(i) (1 SiGn 
+ 1) and are homotopic to it. This is true by virtue of Lemma 2, which guarantees that no two lines of 
the same level begin in the interval Fb Lines of non-zero levels which start in the intervals Fl, Fn+l cannot 
depart to an infinite point (cf. the note in Section 3) and end on the free surface. Note also that since 
t1 > -1~1 and &,, < rwz, there are contours which encompass sources. 

We will consider the contours Reie, -x G 0 s 0 as R + 00. We use formula (2.1) and the asymptotic 
representation of the function Ei(z) for Re(z) and ]z I + m 

Hi(z) = insign(*m(r))+e’{ i, (k -l)l~-~ +@mN-‘)} 

(the last formula is easily obtained from formulae 51.7 and 5.1.51 of [7]). It follows that u,(x, y) = 
-2xn(R-’ sin 8 + R-* cos 28 +O(Rs3) and asx -_j -00 (x + +-) the line ys(‘) (ys(“+‘)) gets closer and 
closer to the line y = 1. 

Fig. 2. 
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We will consider lines of positive level. From (4.1) and (4.2) we obtain the bound 

Un(~i~Y)‘eY~ V,(5i,t)e-‘df d 7t.f?(e-y -I)<& i=l,2 ,...,2n 
Y 

At the same time, it follows from (5.1) that v,&., 0) > 31~ (j = 1,2, . . . , n). Thus lines which start on 
the free surface for values of x which belong to one of the intervals forming the set {n: u&r, 0) > x;} 
must end on the free surface in the same interval, since they cannot intersect the rays x = h (i = 
1,2, . . . ,2n) and cannot depart to infinity. By Lemma 2, it is impossible to have two lines of the same 
level starting in one of these intervals. 

Thus, we have shown that the maximum number of half-submerged bodies for which the given stream 
function u, gives an example of non-uniqueness of problem (l.l)-(1.5), (1.7), is equal to 2n + 1 and 
is the same as the number of local extrema of the function u&x, 0). 

We will also point out some features of the streamlines. We will consider one of the contours ~6”’ 
(2 G m 4 h) and a contour y’, ydm) n y’ = 0 which is close to it and includes it. It follows from (4.1) that u&y) 
> 0 when (n, y) E y’. ‘Ihen from the analytic properties of u,,(x, y) it follows that there are contours rim) = {(x, y): 
u&y) = 6 > 0) for sufficiently small S > 0, and the quantity d&t{@), y&“)> is small. Let h(S) (i = 1,2, . . . ,2n) 
denote the roots of the equation u,(x, 0) = 6, numbered from left to right. The points (&,,,(6), 0) and (&+r(g), 

n - 1) are finite for contours yjm) 
%$ry~!‘l?te btkamlines which start at points ({i($, 

each of which includes the corresponding contour of zero 
0) and (5 (6) 0) cannot depart to infinity and therefore 

form a single contour (Fig. 2). It is only possible for the’ streamlinE to’have this structure if there are n - 1 saddle 
points of the function u&y) at which the level lines intersect. 

The results of the calculation are shown in Fig. 2. Figure 2(a) shows the function vs(x, 0) and Fig. 2(b) shows 
the level lines v&y) == c, where the solid, dashed and dot-dash curves correspond to the values c = 3.5; -l/3 and 
2.2 respectively. The thicker lines correspond to the level c = 0. Since the graphs are symmetrical about the 
coordinate axes, we have shown only those parts which correspond to positive values of x. 

I wish to thank N. G. Kuznetsov for drawing my attention to this topic and for useful discussions. 
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